How To Read A Scientific Paper

Andrea McCollum, Ph.D. Science Skills Bootcamp

Reading papers takes practice!

- Scientific papers are full of terms and ideas specific to a field of study – this can seem intimidating!
- · Practicing by reading articles is the best way to learn.
- It takes time to become an expert at a field and understand everything that is in a paper.

Two main types of papers

- · Reviews
- · Primary Research Papers

Reviews

- · General overview of current state of the field
- Often summarize research from many primary papers
- Can be a great resource for:
 - defining terms
 - understanding historical context of your work
 - identifying how the field fits into the bigger picture

What to look for in a Review

- · Published by an expert in the field
 - Determine if the author(s) have published on the subject before
 - Consider both first and last authors
- · Well-recognized journal
- · Written in fairly clear language
 - Too technical will lose anyone's attention, and can lead to confusion
- · Diagrams are great!
 - Also can be used in your presentations, if properly credited.

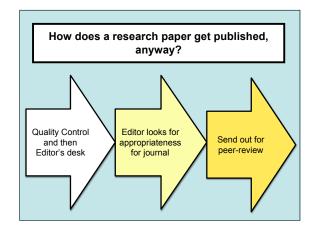
Primary Research Papers

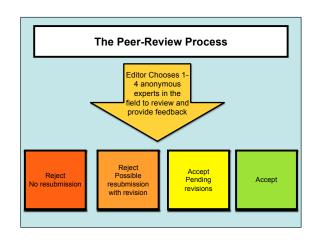
- · Cutting edge research findings novelty is key
- Data are shown that answer specific questions
- Preferably hypothesis-driven research

General format for a Primary Research Paper

- Abstract
- Introduction
- · Materials and Methods
- Results/Data
- Discussion
- · References
- Supplementary Material
- <u>Note</u>: Not every section may appear independently in every paper

Five steps to getting the most out of a scientific paper


- 1. Identify the source of the paper
- 2. Look for the terms, hypothesis and conclusions
- 3. Read the sections of the paper
- 4. Critically evaluate whether the data support the conclusions
- 5. Apply the data to your own research


Identify the sources of the paper

- · Look at the authors list
- Note the institution that produced the paper
- · Is the journal well -respected?

Authorship Rules

- The International Committee of Medical Journal Editors (ICMJE) defines authors as meeting the following criteria:
 - 1) substantial contributions to <u>conception and design</u>, or <u>acquisition</u> of data, or <u>analysis and interpretation</u> of data
 - 2) <u>drafting the article or revising</u> it critically for important intellectual content
 - 3) final approval of the version to be published.
- Standard order is according to contribution, last author usually reserved for the Principle Investigator in the lab

What is an Impact Factor?

- <u>Definition:</u> a measure of the frequency with which the "average article" in a journal has been cited in a particular year or period.
- · IF = Citations / Number of articles published
- Often used to compare the prestige of individual journals. High impact factor = more citations = more prestige

Five steps to getting the most out of a scientific paper

- 1. Identify the source of the paper
- Look for the terms, hypothesis and conclusions
- 3. Read the sections of the paper
- Critically evaluate whether the data support the conclusions
- 5. Apply the data to your own research

Learning terms: start with the Introduction

- · Great place to find important terms
- May not be enough background sometimes look for review papers to fill in the gaps
- Will introduce the model system or organism for the study
- Often will also include the hypotheses and/or brief description of the data, along with main conclusion

Find the term definitions with the References and Reviews

- The Introduction will introduce you to some terms
- The References section lists works that are summarized or cited in the paper
- Reviews are often the best sources of material for past history of a subject

How does one locate the hypothesis in a scientific paper?

- If, Then Statements usually do not appear in scientific papers
- In papers hypotheses are tentative statements that propose a possible explanation to some phenomenon or event
- · Must be testable
- · Usually found in the Abstract and Introduction

Hypothesis Example

- If, Then Statement: If skin cancer is related to ultraviolet light exposure, then high exposure to UV light will cause skin cancer.
- · As would be seen in a paper:
 - Our preliminary data suggest that exposure to ultraviolet light will cause skin cancer.
 - We propose that ultraviolet light causes skin cancer
 - Our data will show that skin cancer is caused by ultraviolet light

Use the Abstract!

- Often in a very formulaic format:
 - Why this research is important (what does it cure, treat, or explain?)
 - Hypothesis
 - The most important data
 - The main conclusion

Find the main conclusions of the paper

- Often summarized in the Abstract or Introduction (usually at the end)
- Hint: Most of the conclusions can be found in the figure legend titles, or in the section headings in the Results section

Five Steps to Getting the Most Out of a Scientific Paper

- 1. Identify the source of the paper
- 2. Look for the terms, hypothesis and conclusions
- 3. Read the sections of the paper
- Critically evaluate whether the data support the conclusions
- 5. Apply the data to your own research

Read the Vaux, et al. paper · Term sheet provided · When reading this paper, +rol-6 +hsbcl2 please identify: The main question being asked - Hypothesis - Important pieces of data Conclusions +transgene -transgene Proceed through normal embryonic development Count cell corpses at end Corpses No Corpses

Five Steps to Getting the Most Out of a Scientific Paper

- 1. How did it feel to read the paper?
- 2. Identify the source of the paper
- 3. What was the hypothesis?
- 4. What are the data?
- 5. What are the conclusions?

General format for a Primary Research Paper

- Abstract
- Introduction
- · Materials and Methods
- Results/Data
- Discussion
- · References
- Supplementary Material
- <u>Note:</u> Not every section may appear independently in every paper
- · Different ways to read a paper

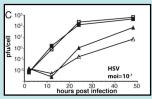
Five Steps to Getting the Most Out of a Scientific Paper

- 1. Identify the source of the paper
- Look for the terms, hypothesis and conclusions
- 3. Read the sections of the paper
- 4. Critically evaluate whether the data support the conclusions
- 5. Apply the data to your own research

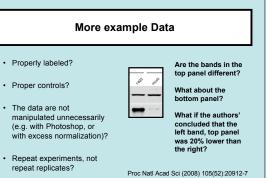
Critically Evaluating the Paper

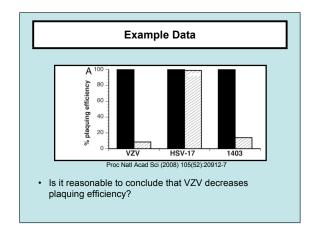
- · The ultimate goal for scientists is to publish the data
- Publishing allows other scientists to critically evaluate your work
- You should never accept other scientists' conclusions at face value – <u>just because they are published doesn't</u> <u>mean they've proven their conclusion with the</u> <u>presented data!</u>

Questions for evaluating the data


- Is the hypothesis original and testable?
- Do the authors use a reasonable approach for the problem?
- Is the data reasonable and does it support the authors' conclusions?
- Are there other interpretations of the data?

How Do You Know If the Data Are Reasonable?


- Examine the Tables/Figures and look for data that meets these criteria:
 - Properly labeled
 - Correct axes
 - Proper controls
 - Reasonable error bars/statistics
 - The data are not manipulated unnecessarily (e.g. with Photoshop, or with excess normalization)
 - Repeat experiments, not repeat replicates


Example Data

- •Properly labeled?
- Correct axes?
- •Proper controls?
- •Reasonable error bars/statistics?
- Repeat experiments, not repeat replicates?
- What about quantitation?

Proc Natl Acad Sci (2008) 105(52):20912-7

Most Important: Does the data support the conclusions?

- Once the conclusion is identified, pick out the relevant data to support that conclusion
- Sometimes useful to make an outline of the conclusions with the supporting evidence

Conclusion: Expressing Bcl-2 decreases cell

Is this supporting evidence?

Five Steps to Getting the Most Out of a Scientific Paper

- Identify the source of the paper 1.
- Look for the terms, hypothesis and 2. conclusions
- Read the sections of the paper 3.
- Critically evaluate whether the data support the conclusions
- 5. Apply the data to your own research

Identify why the findings are important

- · What in the research furthers our knowledge?
- · Hint: Often found in the discussion
- · Example:
 - Hypothesis: Programmed cell deaths in nematodes and humans occur by way of the same molecular pathway that is regulated by bcl-2. (Abstract last line, paragraph 2, line 8)
 - **Question asked:** Does the bcl-2 gene regulate programmed cell death in nematodes?
 - Importance: Identifying a conserved pathway to regulate cell death

Consider how the data could advance the field

- · Techniques
- · Establishing Controls
- · Changing Paradigms
- · Create debate, which creates interest

What can be applied to your own project?

- · Look at the Materials and Methods section
- What controls did they use? (parental worms vs. transgenic worms)
- Are there reagents that you could request for your own project? (bcl-2 vector, etc)

Figure out the next step in the research

- When reading a paper, think about what you would do next
- This may drive future directions for your project by sparking new ideas
- You may also identify potential collaborators

Think about how to apply this knowledge to another scientific field

- Research is now highly interdisciplinary
- Novel ideas and projects are often discovered by applying a new discovery to other fields or systems
- Challenge yourself to find a way to apply an idea or technology to your own project, especially if it is outside your field

Final Thoughts

- Learn to use the sections of the paper as a guide
- Most of your effort should be in looking at the data and conclusions
- It is ok to disagree with a paper's conclusions, or think that the conclusions were unreasonable given the data
- · Remember: practice makes perfect!